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Abstract - The rapid growth of renewable generation, driven 

by increasing concerns about climate change, sustainable energy 

sources, and energy independence, has presented significant 

challenges for distribution system operators (DSOs). 

Integrating intermittent sources while ensuring grid stability 

and reliability demands a robust evaluation of hosting capacity 

(HC) in power distribution networks. However, prevailing HC 

analysis methodologies predominantly rely on conservative 

assumptions or worst-case scenarios, often leading to 

impractical and unreliable outcomes. Commercial tools, though 

offer readily available solutions for hosting capacity analysis, 

suffer from limitations as they typically assess HC of individual 

nodes independently or focus on only a few distributed 

scenarios. 

More elaborate methods have been proposed, attempting to 

cope with the complexity and stochastic nature of the HC 

problem. However, not much consideration has been given to 

their scalability to large distribution systems. 

In response to the complexity and stochastic nature of the 

HC problem, this paper introduces an efficient methodology 

based on stochastic power system simulations and statistical 

analysis. The proposed approach undergoes comprehensive 

assessments to substantiate its efficacy, with a key focus on 

validating its accuracy for reliable HC estimates. Utilizing the 

bootstrap method, a resampling technique, multiple samples are 

generated to mimic possible Distributed Energy Resources 

(DERs) deployments, enabling estimation of confidence 

intervals for HC metrics.  

By applying statistical analysis to power system simulation 

results, insights into the expected variability and uncertainty of 

the problem are gained. These insights guide the selection of the 

minimum number of DER deployment scenarios necessary to 

ensure an efficient and well-informed HC assessment process. 

The proposed methodology effectively addresses the 

challenges of HC analysis, offering scalability to large 

distribution networks. Its efficiency and enhanced accuracy 

make it a valuable tool for DSOs in facilitating the integration 

of renewable generation in a dependable and practical manner. 

Keywords - hosting capacity, renewable generation 

integration, distribution systems, bootstrap application. 

I. INTRODUCTION 

Hosting Capacity (HC) can be defined as the amount of 
additional DERs (typically measured in active power) that can 
be connected to the distribution network without major 
changes in the grid asset, and without causing the degradation 
of selected performance indexes below predetermined 

thresholds. Performance indexes and thresholds are subject to 
variation based on regional practices, codes, and standards.  

The power system can be analysed in terms of its existing 
development status or planned expansion levels. Within these 
two perspectives, hosting capacity assessments encompass 
different aspects and considerations, reflecting the specific 
stage and anticipated changes in the power system's evolution. 
In both cases, it is crucial to acknowledge that the deployment 
of Distributed Energy Resources (DERs) may follow a 
stochastic process, beyond the control of the Distribution 
System Operators (DSOs). This process aligns with individual 
customer needs and economic capabilities.  In fact, hosting 
capacity can exhibit significant sensitivity to the way the DER 
deployment will unfold. Considering worst-case scenarios as 
reference values, can lead to excessively conservative 
assessments [1], [2], [3], and [4]. This becomes even more 
apparent when combining hundreds of feeders, as it is highly 
unlikely that worst-case scenarios would occur in all of them. 

Some research papers proposed a combination of three 
different methods to calculate hosting capacity, namely the 
forward, backward, and “all together” methods [5], [6], and 
[7]. Thus, describing the hosting capacity with the set of the 
three calculated values. These three methods encompass three 
distinct processes for DER deployment: the forward method 
progresses from transformer terminals to the end of the feeder, 
the backward method starts from the end and moves towards 
the transformer terminals, and the "all together" method 
involves a uniform and progressive deployment along the 
feeder. This approach is computationally efficient, as it 
involves only three deployment scenarios, but the range of 
hosting capacity results may be significantly wide, making 
difficult for the stakeholder to take strategic decisions. 
Moreover, there is no guarantee that the three methods 
(forward, backward and “all together”) are representative of 
all the possible DER deployments. 

To address this issue, a stochastic approach utilizing 
Monte Carlo simulation is proposed in both [8] and [9]. In 
these papers, the notion of congestion risk is introduced. This 
risk is represented by a quasi-sigmoidal function, with the x-
axis denoting the values of newly installed Distributed Energy 
Resource (DER) power, and the y-axis representing the 
congestion risk, defined as the probability of encountering at 
least one violation in the system, irrespective of the position 
and distribution of the DERs in the grid, or equivalently to the 
cumulative density function (CDF) of the hosting capacity. 
The relevant probability distribution function can be easily 
derived from these congestion risk curves. 

The above approach as the advantage of fully describing 
the hosting capacity by its CDF and PDF. However, the 
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amount of Monte Carlo iterations (required for obtaining a 
statistically significant sample of scenarios) is a relevant 
limitation of the method, especially for the analysis of large 
distribution networks, with hundreds of feeders and thousands 
of nodes. 

The methodology presented in the present paper is based 
on similar stochastic approach, but it leverages the use of 
statistical technique, such as bootstrap, to identify an optimal 
trade-off between accuracy and computation effort, as 
described in the successive part of this paper. 

When scaling the analysis of HC to large distribution 
grids, it is crucial to account for the stochastic nature of 
distributed energy resources (DERs) deployment, while also 
adopting a computationally efficient method and being able to 
estimate the accuracy of the results. The value of this paper is 
to provide such a method.   

The upcoming sections will provide a comprehensive 
explanation of the methodology its application on a simplified 
system, and a demonstration of its application. 

II. METHODOLOGY 

A. General Considerations 

When addressing the challenge of large-scale renewable 
deployment, it is important to recognize that relying solely on 
conservative hosting capacity values may offer certain 
assurances, but it would not realistically reflect the actual 
hosting capacity of the feeder. This limitation arises from the 
fact that the minimum hosting capacity is typically determined 
when concentrating a significant portion of renewables in 
remote locations, which represents only one or few of the 
countless possible configurations for renewable deployments. 
Therefore, a stochastic approach is proposed, to address these 
limitations.  

On the other hand, the number of potential renewable 
deployment combinations can be astronomically high. For 
instance, in the case of Photovoltaic (PV) connections, 
considering all possible combinations of varying numbers of 
PVs at different locations, the total number of combinations 
would be 2n, where n represents the number of nodes in the 
feeder. More concretely, even for a modest 20-node feeder, 
we would have over one million combinations. For a feeder 
with 40 nodes, the number of combinations would exceed 
1011. Additionally, the injected power can vary across 
different nodes. Consequently, the actual number of possible 
scenarios becomes uncountable. 

Conversely, in the assessment of hosting capacity there is 
often a specific point of estimate of interest, such as the 
average value1. In this case, statistical tools, such as bootstrap 
analysis can be used to create a relevant confidence interval 
around this estimate. 

It is pertinent to note that a trade-off exists between result 
accuracy and computational effort. Increasing the number of 
analysed scenarios enhances the statistical model's ability to 
provide more precise estimates, as the standard error of the 
estimate is dependent on the sample size (for the mean, the 

standard error is proportional to 1/√n).   

As discussed, the proposed approach can be conveniently 
divided in two activities: the first activity is the calculation of 

 
1 The same apply for other statistics, for example a specific measure of 

quantile could be used too. 

the hosting capacity for a number of potential DER 
deployment scenarios. This activity is conducted with the aid 
of power system simulation tools. While the second activity is 
to apply statistical methods to determine the desired point 
estimate of the hosting capacity and the relevant confidence 
interval (i.e. 95% CI). 

In the next subsections, these two activities are discussed. 

B. Calculation of the Hosting Capacity 

One common method to determine the hosting capacity at 
a single node involves gradually increasing the generation 
power at that node until certain predefined constraints are 
breached. These constraints typically pertain to factors such as 
minimum and maximum operating voltage, equipment 
loading (such as lines and transformers), excessive elevation 
of short circuit current, reverse power at the transformer point, 
or maximum harmonic distortion limits.  

The analysis can be performed on a per-constraint basis, 
evaluating each constraint individually, and selecting the most 
restrictive constraint as the reference value for the hosting 
capacity. A Monte Carlo approach can be employed, where 
potential deployments of DERs along the feeders are 
randomly selected. Alternatively, the analysis can be 
conducted independently for all nodes along the feeder (one 
node at time), representing a very specific subset of all the 
potential renewable energy generation deployment scenarios2. 

The Monte Carlo approach presents the advantage of not 
being dependent on the number of nodes in the feeders. This 
is particularly beneficial for feeders with a limited number of 
nodes, as the accuracy of the results may deteriorate if a small 
number of scenarios is analysed. 

Most commercial tools (i.e. [13], [14], [15], [16], [17], and 
[18]) offer readily available modules for individual hosting 
capacity analysis at each node of the feeder, and some tools 
may also have predefined distribution patterns for multiple 
generation points. Usually, the implementation of Monte 
Carlo analysis can be achieved with the assistance of 
automation scripts, such as those written in the Python 
programming language. 

Regardless of the method employed, the analysing of 
hosting capacity typically proceeds with the two following 
steps: 

1. For each constraint, determine the critical operating 
conditions using load flow time series analysis over a 
selected period (e.g., 24 hours, a month, or a year) 
with intervals of 60, 30, or 15 minutes. This process 
will identify the most critical, yet realistic, 
combination of load and generation to be used in the 
static (single point in time) load flow analysis; 

2. Calculate the hosting capacity for a sufficient number 
of potential DER deployment scenarios. This process 
is detailed in Section III.C. 

It shall be noted that not all constraint violations carry the 
same level of criticality. For instance, consider a scenario 
where the hosting capacity is constrained by a single 
overload at a short service line in the feeder. Such an issue 
could be swiftly resolved with a negligible investment. 
However, including this event in the analysis might 

2 See Appendix I for more considerations on this topic. 
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obscure more realistic values of the hosting capacity. 
Therefore, in most cases it is reasonable to neglect 
constraint violations occurring in minor grid elements, 
such as service lines. A proper discernment of constraint 
violations and their handling is crucial to obtain realistic 
results. 

C. Application of Statistical Methods 

After obtaining the values of hosting capacity for a subset 
of cases of size n, in this paper we use bootstrap to generate a 
probability distribution for the average hosting capacity and to 
determine its confidence interval (i.e. 95% confidence 
interval).   

We recall that the bootstrap involves generating a large 
number of resamples (e.g., 10,000) with replacement from the 
same subset of simulation scenarios. A point estimate is then 
calculated for each iteration, and the collection of these point 
estimates forms a probability distribution function. 

More formally, considering the point estimate the 
bootstrap method is based on the following theory: 

The population mean 𝜇 is defined as: 

𝜇 = ∫ 𝑥𝑑𝐹(𝑥) (1) 

Where 𝐹(𝑥) is the cumulative distribution function of the 

random variable 𝑋 (i.e. hosting capacity). 

The sample mean is the same functional of the empirical 
distribution function: 

�̂�(𝑥) =
1

𝑛
∑ 𝐼(𝑋𝑖 < 𝑥)

𝑛

𝑖=1

 (2) 

Where 𝑋𝑖 , . . . , 𝑋𝑛   denote the data (i.e. hosting capacity of 
each simulation scenario). Therefore the bootstrap estimator 

of the population mean µ, is the sample mean, 𝑋 : 

𝑋 = ∫ 𝑥𝑑�̂�(𝑥) =
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

 (3) 

The algorithm for the bootstrap, to determine mean, standard 
error and the (1-α) confidence interval of the hosting capacity 
is the following: 

1. Calculate the mean of the original sample of hosting 
capacity results: 

𝜃𝑛 =
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

 (4) 

2. Draw a bootstrap sample (with replacement) 

𝑋𝑖
∗, . . . , 𝑋𝑛

∗  ~ �̂�(𝑥), and compute: 

𝜃𝑛
∗ =

1

𝑛
∑ 𝑋𝑖

∗

𝑛

𝑖=1

 (5) 

3. Repeat the previous step B times, yielding 

estimators 𝜃𝑛,1
∗ ,…, 𝜃𝑛,𝐵

∗   

4. Let be: 

𝜃 =
1

𝐵
∑ 𝜃𝑛,𝑗

∗

𝐵

𝑗=1

 (6) 

5. Calculate the bootstrap standard error as  

�̂� = √
1

𝐵
∑(𝜃𝑛,𝑗

∗ − 𝜃𝑛)2

𝐵

𝑗=1

 (7) 

6. Let be: 

�̂�(𝑡) =
1

𝐵
∑ 𝐼(√𝑛(𝜃𝑛,𝑗

∗ −  𝜃𝑛)  ≤  𝑡)

𝐵

𝑖=1

 (8) 

7. Let the confidence interval be: 

𝐶𝑛 = [𝜃𝑛  −  
𝑡1−∝/2

√𝑛
, 𝜃𝑛 −

𝑡∝/2

√𝑛
  ], (9) 

where 

 𝑡1−∝/2  =  �̂�−1(1−∝/2), and  𝑡∝/2  =  �̂�−1(∝/2), 

Since we lack access to the entire population, we resort to 
resampling with replacement from a subset of simulated cases, 
which is a typical practice in bootstrap applications. This 
approach introduces two types of errors. The first stems from 
the finite nature of the sample size, denoted as 𝑛. The second 
arises from the finite value of B, the number of resampling 
iterations. However, we have the flexibility to make B 
arbitrarily large (i.e. B = 10,000). As a result, we can disregard 
the error associated with the finite value of B. 

In general, achieving a relatively narrow confidence 
interval is desired to make the results more relevant. 
Increasing the sample size undoubtedly leads to narrower 
confidence intervals, but it comes at the cost of increased 
computational effort. This consideration becomes particularly 
crucial when scaling the analysis of hosting capacity to large 
distribution networks, where balancing computational 
resources and obtaining accurate results is of utmost 
importance. 

In the next section, a simplified case study is conducted to 
determine the width of the confidence interval as a function of 
the sample size (number of simulated scenarios). This analysis 
aims to make a critical decision on the minimum number of 
simulation cases that need to be analysed. 

III. CASE STUDY 

A. The Grid 

The case study focuses on the deployment of Photovoltaics 
(PV) generation in a Low Voltage (LV) feeder.  

The grid being investigated is a radial low voltage 
distribution system consisting of two branches. It is supplied 
by a 100 kVA 33/0.415 kV transformer. There are a total of 
nine nodes within the grid where renewable energy 
generators, specifically PV systems, can be connected (LV 
transformer terminal excluded). The grid configuration is 
illustrated in Fig. 1. The feeder has a relatively small size, for 
the forthcoming explanations.   
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Fig. 1. Simple LV Distribution System. There are 9 nodes where PV 

systems can be connected, excluding the LV transformer terminals. HH 

indicates the number of households at the node. 

The model, including transformer data, lengths of the 
lines, cable cross sections, number of households at the nodes, 
and load patterns is adopted from [10]. 

We define a PV deployment scenario as a random number 
of PVs connected at random nodes of the feeder. For 
simplicity, we assume that all PVs have an equal rated power.  

Since the number of nodes is relatively small, we have the 
ability to simulate all potential PV deployment scenarios. In 
this case, there are a total of 29 possible scenarios, resulting in 
a total of 512 unique combinations, representing the finite 
population. 

These 512 scenarios are simulated in DIgSILENT 
PowerFactory.  

B. Hosting Capacity Analysis (Full Population) 

For each PV deployment scenario, the hosting capacity has 
been calculated by uniformly increasing the power of the 
connected PVs, until any of the selected constraints (thermal, 
loading, short circuit) are violated. The same procedure is 
repeated for all the 512 scenarios.  

The average hosting capacity h  of the feeder is then 
calculated with the following equation: 

ℎ =
1

512
∑ 𝐻𝑖

512

𝑖=1

= 61.688 𝑘𝑊 (10) 

 

 
 

The histogram of h is shown in Fig. 2. 

 

 

Fig. 2. Histogram of the Hosting Capacity (512 Scenarios). The red line 

indicates the mean of hosting capacity, representing our population 

mean. 

From the set of hosting capacity values, the cumulative 
density function (CDF) can be also determined (see Fig. 3). 

 

Fig. 3. ECDF (512 Scenarios). The probability of achieving a hosting 

capacity equal to or higher than the mean value (61.68 kW) is 0.45  

(1 - 0.55 = 0.45). However, for a more conservative approach with a 

95% probability, a hosting capacity of 36.06 kW would be considered 

The Cumulative Distribution Function (CDF) provides the 
probability FH(h) of hosting capacity values being equal to or 
below its argument. Using this information, it becomes 
straightforward to calculate the more relevant probability of 
hosting capacity being equal to or above a specific value. (1- 
FH(h)). 

Depending on the project objectives we can either refer to 
the mean value, or to a specific quantile of the bootstrap 
estimate (i.e. 0.05 quantile). The proposed methodology is 
applicable in both cases. In this paper, we use the mean value, 
which could be a reasonable choice for large distribution 
networks. 

In real-world scenarios, feeders typically consist of a 
larger number of nodes, much higher than 9, making it 
impractical to analyse every single possible PV deployment 
scenario. Consequently, the true distribution of hosting 
capacity and its mean are not accessible and they shall be 
estimated through the statistical analysis of a subset of the 
potential PV deployment scenarios. 

The upcoming subsection will focus on analysing various 
subsets sizes (number of analysed scenarios). This analysis 
aims to explore the impact of considering different subsets of 
PV deployment scenarios on the overall results.  
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C. Statistic Analysis for a Subset of Scenarios 

To assess the accuracy of the proposed method, here we 
conducted 100 independent bootstraps (each with 1000 
resampling iterations). Each of the 100 independent bootstraps 
represents a different potential sample (of the same size) from 
the whole population. This process is repeated for different 
sample sizes, allowing the visualization of the estimated 
standard error for several bootstraps.   

In an actual situation, the bootstrapping process is applied 
to only one subset of simulation scenarios, derived by the 
power system analysis. 

The diagram of Fig. 4 displays the calculated standard 
errors for various numbers of PV deployment scenarios. The 
red lines illustrate the standard errors computed through the 
bootstrap methods, whereas the black circles (connected by 
the solid line) depict the standard error, calculated using the 
population standard deviation 𝜎 (usually unknown), which is 
derived from the hosting capacity values of all 512 PV 
deployment scenarios (finite population): 

𝑆𝐸(ℎ)  =  
𝜎

√𝑛
∙ √

512 − 𝑛

512 − 1
 

(11) 

Where 𝑛  is the sample size (i.e. number of simulation 
cases).  

It shall be noted that the above 𝑆𝐸(ℎ) includes a finite 

population correction factor √(512 − 𝑛)/(512 − 1) , to 

account that the population is finite (512 cases).  

 

Fig. 4. Standard Error vs Number of Scenarios. The black circles connected 

by a solid line repreasent the accurate standard error (SE), while the red 

lines represent the standard error estimated through the bootstraps. The 

plot shows the results of 100 indipendent bootstraps, each one with 

1000 resampling. Each of the 100 independent bootstraps refers to a 

new sample from the population but of the same size. 

For the bootstrap, a more elaborated method than the basic 
bootstrap algorithm presented in section II.C has been used to 
make it suitable for finite population. In particular, the method 
proposed in [12], based on pseudo-population, has been 
arbitrarily selected. Several others bootstrap methods are 
available for finite population [11].   

From the results of  Fig. 4, two quite obvious but important 
facts can be inferred: 

1. The true standard error monotonically decreases. As 
expected, increasing the number of PV deployment 
scenarios reduces the SE(h) - see eq. (4) -, 
eventually approaching zero for the whole 
population (𝑛 = 512); 

2. The standard error calculated with the bootstrap is 
closer to the actual standard error (black circles in 
Fig. 4 ) when the number of analysed PV 
deployment scenarios (𝑛) increases. It can be seen 
that for small sets of scenarios, the bootstrap 
estimation of the standard error has quite high and 
hardly acceptable variance around the true value. 

The next step would be to determine the minimum number 
of scenarios that allow for acceptable confidence intervals. 

The diagram of Fig. 5 presents the half-width of the 95% 
CI, which is the margin of error associated with the confidence 
interval, the distance between the point estimate and an 
endpoint.  The y-axis is normalized to the population mean, so 
that it provides a per units measure of this error. More 
concretely, a y-axis value of 0.1 correspond to a maximum of 
+10% error from the estimated mean (with probability 95%). 

The black solid line represents the values calculated using 
the standard deviation of the population and applying the finite 
population correction factor. The red lines represent the values 
for 100 independent bootstrapping (each one with 1000 
resamples).   

 

Fig. 5. Normalized Half-Width of the Confidence Interval (95%) for the 

mean hosting capacity. The dashed lines provide a reference for a 95% 

CI Half-Width of 10%, corresponding to 𝑛 = 30 scenarios. 

The selection of the number of scenarios depends on the 
specific project requirements, and it is a trade-off between 
computational costs and desired accuracy. For example, if we 
would like to find a hosting capacity which is within +10% of 
the true mean (in average), with a probability of 95%, at least 
a number of 30 PV deployment scenarios shall be selected for 
this small case study.    

The above +10% error shall be considered as average, as 
it is dependent on the selected scenarios, as clear by observing 
the red lines of Fig. 5. 

In Fig. 6, three histograms are presented for the average 
hosting capacity relevant to three different sample sizes, 
namely 30, 100 and 200. The population mean (red line) is 
usually unknown, but the random confidence interval would 
embrace this value with a 95% probability. 



6 

 

 

 

Fig. 6. Histogram of the average hosting capacity for three different sample 

sized (30, 100, and 200). As expected, the confidence interval becomes 

narrower when increasing the sample size. 

 

In the following section, we present additional 
considerations regarding the selection of simulation scenarios. 
Although these considerations are not directly pertinent to the 
current research, we believe they can serve as a source of 
motivation for further exploration in this field. 

IV. CONCLUSIONS 

In conclusion, this research paper has emphasized the 
critical importance of striking an optimal balance between 
computational effort and result accuracy when assessing 
hosting capacity in large distribution networks. Leveraging 
stochastic power system simulations and probability theory, 
including probability and cumulative density functions, point 
estimates, and confidence intervals, appeared as a promising 
method for such assessments. 

The proposed approach was successfully demonstrated 
through a simple case study, where statistical outcomes were 
compared against the true value of expected hosting capacity. 
The limited size of the case study allowed for the 

 
3 With the assumption that DERs have the same size. 

determination of the true value, which is typically unknown, 
due to the finite number of potential DER deployment3. 

Currently, the same method has been applied by Tractebel 
Engineering GmbH in a real-world application for a large 
distribution system, with 44 feeders and hundreds of nodes per 
feeder. Ongoing research on this topic continues to explore 
and refine the methodology. 

APPENDIX I 

In this Appendix I, further consideration on the selection 
of the potential DER deployment scenarios is discussed.  

In particular, drawing from project experience, we have 
observed that for feeders with a substantial number of nodes, 
employing the specific subset of hosting capacity values 
relevant to the independent hosting capacity of each node of 
the feeder (single-nodes scenarios) often yields conservative 
results for the estimation of the expected hosting capacity.  

Further research is ongoing to determine the general 
validity of the conservative nature of this approach. 

Generally speaking, the use of a conservative approach 
could be highly desirable, especially in cases where there is a 
significant need to reduce the number of simulation scenarios.  

In other words, by opting for a conservative approach, we 
intentionally sacrifice a certain degree of accuracy in our 
estimations. However, this trade-off comes with the distinct 
advantage of substantially reducing the number of simulated 
scenarios required for the analysis. 

The conservative nature of approach would ensure that our 
estimations remain on the safe side, providing eventually a 
buffer for potential uncertainties or variations in real-world 
conditions. This cautious stance can be particularly valuable 
in situations where a comprehensive analysis with a vast 
number of scenarios may be computationally too intensive.  

In essence, the adoption of single-node scenarios could 
strike a balance between accuracy and efficiency, allowing the 
achievement of reliable results while streamlining the 
simulation process significantly.  

An intriguing observation is that the hosting capacity 
values for DERs dispersed across multiple nodes in most 
situations fall within the range of the maximum and minimum 
hosting capacity evaluated at the same individual nodes. This 
behaviour further reinforces the conservative nature of the 
approach, as it captures the potential variability in hosting 
capacity across the whole feeder. 

In Fig. 7, the ECDFs of 100 random equally sized sets of 
scenarios – red solid lines – are compared with the ECDF 
relevant to the single-nodes scenarios – black solid line. The 
blue scatter points represent the ECDF of the whole 
population. 
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Fig. 7. Estimated Cumulative Distribution Function (ECDF) of 100 random 

equally sized sets of scenarios (red solid lines) compared to the single-

nodes scenarios (black solid line). When referring to the true mean, the 

single-nodes scenarios provide a quite conservative result. 

Observing the results of Fig. 7, when reference is made to 
the true mean – blue vertical dashed line the CDF of single-
nodes scenarios is indeed among the most conservative (CDF 
shifted on the left). 
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